
Replication Does Survive Information
Warfare Attacks∗

J. McDermott
Naval Research Laboratory
Washington, DC 20375-5537, USA
mcdermott@itd.nrl.navy.mil

Abstract

Recent literature on information warfare has suggested that general replication is
not useful in dealing with storage jamming attacks. We show that special cases of
replication are useful not only in detecting but also in recovering from storage
jamming attacks.

Keywords

Information warfare, storage jamming, unauthorized modification, Trojan horse

1 INTRODUCTION

Ammann, Jajodia, McCollum, and Blaustein define information warfare as the
introduction of incorrect data intended to hinder the operation of applications that
depend on the database (Ammann, Jajodia, McCollum, and Blaustein, 1997). In
describing their approach to surviving these kinds of attacks on databases, imply
that replication is not useful in dealing with information warfare attacks. In this
paper we present results to the contrary, i.e. replication can be used (carefully) to
both detect and survive information warfare attacks, on a practical basis.

McDermott and Goldschlag (McDermott and Goldschalg, 1996a), (McDermott and
Goldschlag, 1996b) define storage jamming as “malicious but surreptitious modi-
fication of stored data, to reduce its quality. The person initiating the storage
jamming does not receive any direct benefit. Instead, the goal is more indirect,
such as deteriorating the position of a competitor.” This is essentially the same as
information warfare, and we adopt the latter term. To provide context, Amman et
al. specifically do not consider Trojan horses within the database system (called
internal jammers (McDermott and Goldschalg, 1996b)), but instead consider a
wide range of attacks other than Trojan horses. Both groups agree that Trojan
horses are more effective attackers, since they can access data which the human
attacker cannot. McDermott et al. show how to detect sophisticated attacks by
Trojan horses inside the database system but do not address recovery or continued

∗
 This work was supported by ONR. Any opinions, conclusions, or recommenda-

tions expressed in this paper are those of the authors and do not necessarily reflect
the views, policies, or decisions of the Office of Naval Research or the Department
of Defense.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Replication Does Survive Information Warfare Attacks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,4555 Overlook Avenue,
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

operation. Amman et al. do not address detection. Instead, they show not only how
to assess damage after an attack, but also how to continue operation with partially
damaged data. Here, we show how replication can be used to not only detect at-
tacks, but to assess damage and continue operation, thus surviving information
warfare attacks.

We borrow some terms from Ammann et al. and refer to data damaged by an at-
tack as either red data or off-red data. Red data is unsafe to use; off-red has been
damaged, but may be used. Green data is valid and has not been damaged. We also
use red and green to describe values that are to be stored as data, by the attacker
and the defender respectively.

2 REPLICATION AS A DEFENSE: DETECTION

Replication in general is problematic in an information warfare context. Under
many replication approaches, red data can be replicated automatically and pre-
cisely to many locations. However replication works as a defense if we use (one-
copy serializable) logical replication over distinct database systems. Many repli-
cation algorithms copy data values from the source data item to its replicas.
However, logical replication copies the command that caused the source data item
to change. The command is executed at each replica’s site and, because of one-
copy serializability, results in the same new value for the replica. If we assume a
distinct provenance (defined in the next section) for the database system software
at each site, then the Trojan horse will not be replicated at all sites. An attack must
compromise multiple, possibly heterogeneous, host programs, an unlikely event in
practical systems. Even if the attackers can succeed at every site, the attack still
may fail. If the Trojan horses are not able to deliberately malfunction in a one-copy
serializable fashion, their red values will diverge. This can be ensured by restrict-
ing communication between the sites to just the protocols needed to carry out the
authorized replication. So we can expect a scheme using n replicas to detect up to
n-1 cooperating Trojan horses and possibly detect an n-Trojan horse attack.

Detection is simple in the replication defense. There is a detection process at each
source or replica site. Following changes to protected data, the process at the
source site computes a checksum over the changed data and sends it to each replica
site, along with the identification of the change. After the logical update is per-
formed at a replica site, the detection process at the replica site computes its own
checksum and compares it to the checksum transmitted by the source site detection
process. If there is disagreement, there is a problem. Checksums are not essential
to the approach and are merely used to facilitate efficient comparison. The granu-
larity of the comparisons or checks is a tradeoff between speed and storage.
Comparisons over individual data items allow quicker response to attacks but take
more storage to perform. We also do not need to check every change, since the
insertion of bogus data at some sites will ultimately diverge the copies.

If we establish checksums over our entire database, detection can be effective
against both external jammers and internal jammers. (External jammers attack files
outside their host application, e.g. a Trojan horse hosted by an Oracle database
system that attacks Mathematica files is an external jammer.) Indistinguishability
(McDermott and Goldschlag, 1996b) comes for free, without our being able to
define or verify it.

Table 1 . The refueling relation

Aircraft Pilot Tanker Refuel

Sword 1
Sword 2
Axe 1

Bong
McGuire
O’Hare

Coke 1
Coke 2
Coke 2

12 000
12 000
33 000

Table 2. The tanker relation

Tanker Fuel Available

Coke 1
Coke 2

33 000
19 000

We use the aircraft refueling example of Ammann et al. Suppose we have a rela-
tional database with two relations refueling and tanker. Both relations are
replicated at three sites: cactus, yucca, and sorrel. The checksums for refueling and
tanker are r1 and t1, respectively. At site yucca, a command is issued to “update
refueling set tanker = ‘Coke 2’ where aircraft = ‘Sword 1’”, but there is a Trojan
horse in the database system at yucca that sets tanker = ‘Coke 1’ where aircraft =
‘Sword 2’. The new (incorrect) checksum for refueling is r2, which is sent to sites
cactus and sorrel, along with the command “update refueling set tanker = ‘Coke
2’ where aircraft = ‘Sword 1’.” At both cactus and sorrel, the requested change is
made to refueling, but the detection processes compute a different checksum r3,
because the result of correctly executing the command is different. Either detection
process can now report a problem because r2 ≠ r3. Notice that, in this example, we
must compute checksums for relation tanker, because the Trojan horse may have
modified the tanker relation while performing “update refueling set tanker =
‘Coke 2’ where aircraft = ‘Sword 1’” correctly. If the Trojan horse had been at
site cactus the attack would still be detected by the difference in checksums. (We
defer an example of damage assessment and continued operation until later in the
paper.)

It is important that the detection process be separate from the database system.
Otherwise, it might be possible for the Trojan horse to send checksums for green
values to other sites while writing red values at its own site. Furthermore, the de-
tection process must be trusted, i.e. it must be high assurance software that is
protected from tampering. Finally, we are assuming that the Trojan horse can be
located and removed using existing system administration tools.

Although this approach is reminiscent of Byzantine generals approaches, we do not
recommend extending it to carry out a similar automatic agreement protocol. The
foremost reason for this is that our approach is intended to work with shrink-
wrapped general purpose software. It is unlikely that software vendors will modify
their products to carry out the cryptographically protected voting protocols needed

to reach Byzantine agreement. A less important reason is that use of such proto-
cols for every update would seriously impact the performance of most database
systems. At present it is more expedient to detect the attacks and then remove the
Trojan horse.

2.1 Distinct Provenance

Software that is created, delivered, installed, and maintained by distinct sets of
people has a distinct provenance. Distinction can be forced to many levels by a
variety of techniques. Since multidatabase techniques allow replication over het-
erogeneous systems, the database systems at each site can be different, even if they
are shrink-wrapped general purpose software packages.

1
 Shrink-wrapped general

purpose software packages (e.g. the database system software) can be purchased
through blind buys, which simulates distinct provenance. Applications, site-
specific software, macros, etc. can be developed using clean room techniques. In a
clean room approach, developers provide inspected source code to each site. The
source code is converted to executable form (e.g. compiled and linked, converted
to p-code) and installed at the operational sites by personnel distinct to each site.
Maintenance and administration can likewise be separated site-wise by clean room
techniques. Our notion of distinct provenance is not the same as n-version pro-
gramming. We are not trying to tolerate inadvertent bugs but to deny an attacker
access to multiple sites. The expectation is that we have now forced would-be at-
tackers to compromise multiple host programs in very sophisticated ways. A
practical n-Trojan horse attack can only succeed if all n Trojan horses can maintain
one-copy serializability over all changes to their red data and internal states. Since
the successful Trojan horses cannot be replicas of each other, this is problematic
for the attacker. If we assume, say a software development team, has m members
who understand the software

2
 then the n-Trojan horse attack reduces to an mn-

person manual attack.

In theory, a distinct provenance is possible. In practice, some software may have
commonality. Some distinct software will either have been developed with the
same tools or be based on the same packages. This raises the question of Trojan-
horse-writing Trojan horses (McDermott, 1988). Fortunately, a would-be attacker
introducing an attack via widely-used software faces a significant problem. The
problem is that the Trojan horse’s lifetime is now likely to be expended against
systems other than the target. The Trojan horse will trigger on sites that are not the
intended target. The attacker must now arrange to turn off the Trojan horse in sys-
tems that are not targets or risk premature discovery of the attack. Attacks via
automatic data input systems face the same problem. More red data must be cre-
ated, and not all of it will be put in the target database. This increases the chance
of someone detecting the attack by inspection of the data.

2.2 Manual Attacks

1
 Introduction of heterogeneity may require the use of trusted mapping functions

that are assured to map the logical update commands in a way that preserves
checksums.
2
 The point here is that m is not as large as the entire team, but in a well-managed

properly assured software development program greater than unity. Under poorly-
managed, low-assurance development, we are not sure any defense is possible.

Logical replication is clearly a problem for Trojan-horse-based attacks because
those attacks function by “disobeying” the commands given to the software. So we
have frustrated the most effective means of attack. But what about less effective
manual attacks? Manual attacks are carried out by giving malicious commands to
the database system. We can deal with manual attacks in one of two ways: 1) by
incorporating an n-person rule, or 2) by incorporating transaction control expres-
sions (Sandhu, 1990). An n-person rule requires n humans outside the system to
agree to a change to the database. Transaction control expressions are a more gen-
eral form of this concept. They require multiple users to agree to specific
conditions defined on specific steps of a transaction. In either case, we assume that
data manipulation commands are legitimate unless all n persons can collude.

We also note that in newer automated systems, the amount of manual input to a
database is less than in the past. For example, tanker aircraft may have on-board
software that automatically reports the amount of fuel carried. Refueling assign-
ments to aircraft may be calculated by a decision aid program. This appears to be
just moving the problem around, but in fact it reduces the opportunities for manual
attacks. Information warfare attacks via automatic data input suffer from the same
weakness as Trojan horses written into mass-produced software (see below).

2.3 Application Attacks, Interface Attacks, etc.

Careful readers will question whether application programs can be abused to
simulate the advantages of manual attacks while avoiding transaction control ex-
pressions or n-person rules. If an application outside the database contains the
attacking Trojan horse, it can submit commands to insert bogus values and the da-
tabase system will replicate the bogus commands as though they were manual
commands. Fortunately, this type of attack is frustrated by replicating the applica-
tion software, i.e. defensive replication is not limited to database systems. The
same type of attack can be made via any software (we hope not via hardware or
firmware!) that lies between a system’s input devices and its output devices. Care-
ful replication of these components will suffice to detect such attacks just as the
basic database attacks are detected. Our approach does have trouble with the con-
nections between a system and its I/O peripherals. When we finally reach the
devices that lie at the boundaries of our system, things become unclear. In a theo-
retical sense, we can define the problem away by saying that attacks that modify
data as it is being put in or out are not information warfare attacks. In a practical
sense, we would have to limit our replication to components that handle the most
critical data.

3 REPLICATION AS A DEFENSE: DAMAGE ASSESSMENT

Ammann et al. introduced the important concept of damage markings. Damage
markings are attributes that indicate the degree of damage that has been assessed
upon a particular data item. We also adopt damage markings and use their scheme.

Leaving other considerations such as system errors aside, when a check fails and
we detect an attack, we should expect that either the source database system has
been compromised or the replicas that failed the check have been compromised.
All systems participating in the defense should be alerted. We assume that database
administrators and support teams will eventually locate the Trojan horse and re-
move it. Data items relating to the change that failed the check should all be
marked red, even though some will in fact be green. The correct values can be
determined by manual inspection, by simple majority vote over all copies of a data

item. Correct copies of the data are then marked green. Copier transactions can use
the green replicas to repair damaged copies of data items.

Suppose we look at damage assessment in our refueling example. Red markings on
the copies of refueling at sites cactus and sorrel can be changed to green by the
damage assessment transaction. Note that markings for relation tanker need not be
changed at any point during this attack. When the detection processes at sites cac-
tus and sorrel detect the attack, all tuples of the refueling relation can be
temporarily marked red, on the basis of the text of the command that failed the
checksum. Damage assessment in this case can be accomplished by majority vote,
which allows us to identify the second tuple of yucca’s copy of refueling to be
damaged. Tables 3 and 4 indicate the state of the database after damage assess-
ment, with red data underlined.

Table 3. Marking the damaged refueling relation at site yucca

Aircraft Pilot Tanker Refuel

Sword 1
Sword 2
Axe 1

Bong
McGuire
O’Hare

Coke 2
Coke 1
Coke 2

12 000
12 000
33 000

Table 3 . Marking the damaged refueling relation at sites cactus and sorrel

Aircraft Pilot Tanker Refuel

Sword 1
Sword 2
Axe 1

Bong
McGuire
O’Hare

Coke 2
Coke 2
Coke 2

12 000
12 000
33 000

4 REPLICATION AS A DEFENSE: CONTINUED OPERATION

The use of logical replication may allow us to disconnect compromised systems
until the Trojan horse can be disabled. If an uncompromised site can act as a
source site, it can take over from a compromised source. Replica sites that do not
originate data are also easily disconnected.

 A more complex approach would logically “disconnect” compromised data items
(e.g. classes or relations)

4.1 Defensive Partition

If the compromised site is not the source of the data or there is an alternate source
site, then the replicated database system can be partitioned into a damaged and an
undamaged component. The partition can take place after damage assessment and
could be decided on the basis of an agreement algorithm, just like the damage as-

sessment. Any compromised sites are placed in the damaged component. The sites
in the undamaged component can continue to operate normally. Sites in the dam-
aged component would only be allowed to submit read requests to sites in the
undamaged partition.

4.2 Single-Source Data

If the replication is done with only one source site, and that site is compromised,
then we conjecture that we can still use a modified version of the continued opera-
tion protocol of Ammann et al. Their protocol uses transactions that distinguish
between inputs, outputs, pure reads, updates (read and write), and blind writes, as
well as insert and delete. Our modifications for continued operation under single-
source replication are:

1. We do not use the off-green marking. Correct
3
 values of every data

item will be available for repair of every detected attack. We decide
at database design time whether a data item will be marked red or off-
red during damage assessment.

2. We do not use the Coincidental Damage Deletion rule because it may
allow incorrect deletion of off-red data that will ultimately be marked
green by a damage assessment algorithm

4
. We do use the other rules

listed below. Notice that the remaining rules have been modified to
incorporate replication.

a. Confinement: A normal transaction T that attempts to read, up-
date, blind write, or delete a data item accesses any available
green copy. If no green copy is available, the normal transaction
attempts to read an off-red copy. If no off-red copy is available,
then T rolls back. A normal transaction may not create red data.

b. Propagation: If a transaction T reads data marked off-red, then
any output by T is marked off-red. Transaction T may not update,
blindly write, or delete data for which a green copy is available.
Transaction T may not create off-red data.

c. Coincidental Repair of Off-Red Data: If a transaction reads only
green data then any off-red data item it writes blindly is marked
green.

3. We simplify the definition of consistency by leaving out the accept-
able but not necessarily consistent integrity constraints, giving us the
following definition of integrity

a. For each integrity constraint i ∈ I, where I references exclusively
green data, i holds.

b. For each integrity constraint i ∈ I, where I references data items
x1, …xn that are not green, there exist values for x1, …xn such
that i is satisfiable.

3
 but not necessarily up-to-date

4
 We assume that the presence of correct copies of the data makes it likely that this

repair will take place in a relatively short period of time.

4. All data is initially marked green. Markings are changed by a damage
assessment algorithm, from green to red or off-red, iff the data is dam-
aged. Damage assessment transactions do not change any data, but
correctly identify valid copies of data items that have damaged replicas.
Markings are changed by a copier transaction repairing damage, from red
or off-red to green.

A normal (i.e. not a copier, attacker, or damage assessor) transaction T preserves
consistency if, given a consistent and all green state S1, T produces a consistent all
green state S2.

We now pose a theorem analogous to one of Ammann et al., namely

4.3 Theorem

Suppose a consistency preserving normal transaction T follows the modified con-
tinued operation protocol defined above, and S1 is a consistent state of the possibly
damaged database. Then state S2, the state resulting from the application of T to S1,
is consistent.

Proof:

The Confinement rule prohibits transaction T from accessing any red data. Trans-
action T cannot violate I by reading or writing red data.

1. The Propagation rule allows T to cause green data to become off-red. Consider
an integrity constraint i. If some copy of a data item x referenced in i is green
in state S1 and becomes off-red in state S2 as a result of transaction T’s actions,
then there must be values for a copy of data item x that satisfy i , that is value
of x in S1. (Even though green replicas of x are often available, all copies of x
may be temporarily marked red or off-red by a damage assessment transac-
tion.) A transaction that reads off-red data under the Propagation rule cannot
modify green data without causing it to become off-red. For this reason, green
data in the new state S2 must also have been marked green in state S1. Integrity
constraints in I are satisfied in S2.

2. The Coincidental Repair of Off-Red Data rule allows a normal transaction T to
change the marking of an off-red data item x to green when writing blindly, if
T only reads green data. Since transaction T is consistency preserving, the val-
ues it writes when changing x satisfy I in S2.

To return to our running example: for continued operation we could at first not use
any data from relation refueling. After damage assessment, the relations would be
marked as shown by Tables 3 and 4. We could read and modify the copies of refu-
eling at sites cactus and sorrel even though the damage was not repaired.
Ultimately, a copier transaction could repair the “Sword 2” tuple of yucca’s copy
of refueling, by copying correct values from either cactus or sorrel.

4.4 Stored Procedures

Stored procedures are widely used in current databases. Their impact on storage
jamming is problematic. First of all, the stored procedure mechanism is an ideal
tool for building efficient, sophisticated jammers. Stored procedures also make
good hiding places. On the other hand, all but the most sophisticated jamming
attacks against stored procedures are probably too risky for the attacker. Plausible

values for passive data items are easy to generate, either by arithmetic or by copy-
ing components (e.g. fields). Applying simple arithmetic to the text of a stored
procedure does not necessarily result in a plausible, valid program text. Copying
substrings of a program text into the target procedure may result in a valid pro-
gram, but probably not a plausible one.

Predictability is also an issue for the attacker. The modified procedure may exhibit
spectacular behavior that immediately reveals the Trojan horse. Programs that can
automatically generate valid program texts that also implement specific algorithms
are still in the research stage. They are also relatively large, i.e. on the order of
general purpose database system software, so they would be difficult for the at-
tacker to hide. Inserting bogus code into multiple stored procedures could result in
a combinatorial explosion of bad data that would also reveal the attack. It is possi-
ble that future research in automatic code generation could make it possible to
build a small malicious program that surreptitiously modifies stored procedures.

Stored procedures require extra care on the part of the defenders. They must be
replicated, but with distinct provenance. They should not be automatically copied
or translated to the various sites, but should be reviewed outside the database sys-
tems and then installed manually. If distinct provenance is maintained, replication
should be an effective means of defending against jamming of stored procedures.

5 CONCLUSIONS

Before presenting our conclusions, we would like to discuss some key assumptions
we are making, so the that the application of our results will be clear:

• We assume that some malicious software can be introduced into most systems
during their lifetime. We assume that introducing specific malicious software
into multiple sites is problematic and cannot be done repeatedly or at will.

• We assume malicious software or users can be removed from a system soon
after they are detected. This is not always so in real life, but it is possible in
systems following best practice.

• The following software components must be trusted: the detection process that
computes, compares, and transmits checksums, any mapping functions used to
translate logical updates to site-specific languages, damage assessment voting
or agreement algorithms, and copier transactions used to repair damage. To
warrant this trust they must be correct, unbypassable, and tamper-proof. We
assume sufficient access control, audit, and cryptographic systems to make
this be so.

Replication via logical updates is a viable defense that allows detection of, damage
assessment after and continued operation during information warfare attacks. With
n replicas, logical replication is effective in detecting automatic (Trojan horse)
attacks involving less than mn person collusion, where m is the number of mem-
bers of a software development or maintenance team. With n-person data entry,
logical replication is effective in detecting manual attacks involving less than n-
person collusion. With transaction control expressions, the likelihood of successful
manual attack is even less.

Detection of an attack by logical replication results in an undamaged copy of the
target data, at either the source or the replica site. A simple majority of undamaged
copies is sufficient to identify the correct values. Even if there is no majority, pos-

session of the text of the offending command will allow (admittedly tedious) iden-
tification of the correct value.

The continued operation protocol of Amman, Jajodia, McCollum, and Blaustein
can be used to operate a replicated database system prior to identification of the
correct values. Once the correct values have been identified, the database can oper-
ate from either green copies or our modification of the original continued operation
protocol. The existence of identifiably correct copies makes it possible to inten-
tionally partition the damaged database system, thus isolating the offending
subsystem.

At present we are prototyping proof-of-concept software for a replicated architec-
ture defense. Our target system is SQL Server running on Windows NT. Future
work should include more sophisticated continued operation protocols that account
for both communication failures and site failures. Specific damage assessment al-
gorithms, accompanied by improved damage marking schemes may be beneficial
to improved recovery from attacks.

5.1 Acknowledgements

We would like to thank David Goldschlag, Carl Landwehr, and Robert Gelinas for
their contributions to this paper. The thoughtful comments of the anonymous refe-
rees have improved the paper considerably.

6 REFERENCES

Ammann, P. Jajodia, S., McCollum, C., and Blaustein, B. Surviving information
warfare attacks on databases. In Proceedings of IEEE Computer Society Sympo-
sium on Security and Privacy, Oakland, California, May, 1997.

McDermott, J. A technique for removing an important class of Trojan horses from
high-order languages. In Proceedings 11th National Computer Security Confer-
ence, Baltimore, 1988.

McDermott, J. and Goldschlag, D. Storage jamming. In Database Security IX:
Status and Prospects (D.Spooner, S. Demurjian, and J. Dobson, eds.), Chapman
and Hall, London, 1996.

McDermott, J. and Goldschlag, D. Towards a model of storage jamming. In Pro-
ceedings IEEE Computer Security Foundations Workshop, Kenmare, Ireland,
June 1996.

McDermott, J. Practical defenses against storage jamming. 20th National Informa-
tion Systems Security Conference, Baltimore, MD, October 1997.

Sandhu, R. Separation of duties in computerized information systems. In Database
Security IV: Status and Prospects (J. Jajodia and C. Landwehr, eds.), North-
Holland, 1990.

7 BIOGRAPHY

John McDermott has been active in computer security research since 1987. He
received his Ph. D. from George Mason University in 1994. His current interests
are data integrity and security for mobile agents.

